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Abstract 

Fundamental Studies and Isolation Strategies 
for Metal Compound Nanoclusters 

Michael A. Duncan 

Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 

Objective: The goal of our research is an understanding of metal-metal and metal-ligand 

bonding relevant for the discovery of new nanocluster materials and the design of nanocluster 

catalysts. Metal bonding is fundamental in Chemistry, but these interactions are problematic for 

current theoretical methods. Laboratory measurements are therefore essential to guide the 

improvement of theory and to discover new materials. Because theory has limited predictive 

power, unanticipated structures may yet be discovered for metal-containing nanoparticles or 

their aggregates. Fundamental studies reveal the principles governing cluster growth, stability, 

and reactivity, thus enabling the rational design of nanocluster materials. We work to discover 

these principles and to apply them for real nanoparticle synthesis on a macroscopic scale. 

Approach: Our approach is to study the properties of metal clusters in molecular beams, 

where experiments are possible with size selection and an exact knowledge of composition. 

Clusters are produced with pulsed laser vaporization , detected with time-of-flight mass 

spectrometry and studied with new forms of infrared laser spectroscopy. These studies focus 

on transition metal compounds (carbides, oxides, silicides) that are expected to have high 

stability, an essential property for their isolation. Photodissociation and IR spectroscopy 

experiments reveal stability and bonding patterns. However, clusters containing transition 

metals are often highly reactive. This forms the basis for catalytic activity, but it also introduces 

difficulties in their isolation as small particles. To understand catalytic activity and to design 

inert coatings for nanoclusters, we investigate their surface chemistry via adsorption of small 

molecules. In a parallel and co-dependent line of work, we employ a new flowtube reactor for 

macroscopic synthesis of ligand-coated nanoclusters. This device employs a high throughput 

laser vaporization source, a flow reactor for the application of ligand coatings and a low

temperature isolation trap for collection of ligand-coated nanoclusters in solution. 
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Statement of Objectives 

Fundamental Studies and Isolation Strategies 
for Metal Compound Nanoclusters 

Michael A. Duncan 

Department of Chemistry, University of Georgia, Athens, Georgia 30602 

Metal-containing cluster molecules and nanoparticles .are produced in the gas phase via 

laser vaporization of solid targets, and these species are studied with mass 

spectrometry and infrared laser spectroscopy. Metal carbide, oxide and silicide 

nanoclusters are studied in the size range from a few up to about 300 atoms. New 

infrared laser spectroscopy techniques investigate the vibrational spectroscopy of the 

nanoclusters themselves as well as those of molecular "adsorbates" attached to their 

surfaces. These nanoclusters are also evaluated for macroscopic synthesis via ligand 

coating in a new laser vaporization flowtube reactor apparatus. These overall 

experiments provide fundamental data for the structures, bonding stability and 

chemistry of metal atom clusters and they have the potential to discover new stable 

clusters that can be isolated and employed for "building block" materials. 
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Technical Proposal 

Fundamental Studies and Isolation Strategies for Metal Compound Nanoclusters 

Michael A. Duncan 

Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 

Introduction 

Metal-containing clusters and nanoparticles provide new materials with u'nusual 

electronic, optical, magnetic and chemical properties.1
-
7 The term "cluster" generally 

refers to particles smaller than a few hundred atoms, and "nanoparticle" generally 

indicates larger species with hundreds to thousands of atoms. Although their sizes are 

different, clusters and nanoparticles have many features in common. Both require 

special techniques for their preparation and study, and both may have properties that 

are different from those of the corresponding bulk materials. Although these systems 

have been the focus of intense investigation over the last 20 years, it is still not possible 

in most cases to predict the properties of clusters or nanoparticles. Quantum theoretical 

methods are gaining capability, but experimental work remains essential to the 

discovery of new systems and the elucidation of their behavior. In our research 

program, we focus on metal compound (carbides, oxides, silicides) clusters and 

nanoparticles. We produce these species in molecular bea'ms with pulsed laser 

vaporization of solid targets. We investigate the structures of clusters and adsorbate 

molecules bound to their surfaces with mass spectrometry and new forms of infrared 

laser spectroscopy. In a parallel effort, we employ new strategies to isolate 

macroscopic amounts of clusters of these same materials, stabilized with ligand 

coatings. 
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.Results of Work in the Prior Funding Period 

Infrared Probes of Metal Cluster Structure and Bonding 

Contract No. F49620-03-1-0044, January 1, 2003 to December 31, 2005 

In the current funding period, we have made progress in several areas of metal cluster 

research, as summarized below. The papers published acknowledging AFOSR support 

are listed as references R1-R10. More details about this work and instrumentation 

photographs are available on our group web site at www.arches.uga.edu/-maduncan. 

Metal Carbide Clusters 

Transition metal carbides exhibiting the remarkable magic number at M8C12 

(M=Ti, V, Nb, etc.) were first reported by Castleman and coworkers.8 These so-called 

"met-cars" clusters were speculated to have a cage structure with dodecahedral 

symmetry. Soon after this initial finding , our group reported other species with similar 

stability in the form of M14C13 (M=Ti, V, Nb) clusters.9 These latter clusters are believed 

to have fcc structures and were denoted as "nanocrystals." Since this early work, met

cars and nanocrystal carbide clusters have been studied extensively8
-
21 and they have 

been the subject of many theoretical calculations. 22
-
36 However, until recently, there 

was no spectroscopy on these species with vibrational resolution and there was no 

direct determination of their structures. In 1999, the former situation changed in an 

exciting way through our ·collaboration with Meijer and coworkers.3744 In this work, we 

developed an experiment using infrared resonance enhanced multiphoton ionization 

(IR-REMPI) to obtain vibrational spectra for these carbide clusters. This method relied 

on the "FELIX" free electron laser that provides high intensity tunable IRradiation in the 
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400-1 800 cm-1 region, where carbide stretching modes are found. We first applied IR

REMPI to TisC12 and Th4C13,37-38 and more recently these methods have been extended 

to other metal carbide39
-4

1 and oxide clusters.41
-44 With these vibrational spectra, we 

and others that have joined this effort45
-4

7 a·re able to test the structures predicted by 

theory for these clusters. 

In recent work, we have extended the study of carbides to the noble metals and 

to silicon carbide.R6 In the early transition metals, plasma reactions between metal 

vapor and added methane led to the formation of carbides, but this chemistry does not 

work for less reactive systems.9 To form noble metal carbides, we use composite 

samples consisting of a carbon rod with an evaporated metal film coating. Laser 

vaporization of this composite sample produces the desired mixed clusters. To 

investigate the stability and structures of these systems, we use mass spectrometry and 

mass-selected photodissociation. In the past, copper-carbon clusters have been 

detected48
.4

9 and suggested to have metal-centered cage structures.48 However, as 

shown in the example in Figure 1, photodissociation of MCn + (M=Cu, Ag, Au) all find that 

the elimination of the neutral metal atom is the main fragmentation channel. This 

suggests that these clusters represent carbon species with metal attached externally. 

Metal-Silicon Clusters 

Transition metal-silicon clusters were first studied by Beck, 5° and there has been 

a recent flurry of both experimental51 -53 and theoretical54
-6

3 papers on these fascinating 

species. As in the metal carbide species, magic numbers are detected in the cluster 

distributions that grow under a wide variety of conditions. Magic numbers for iron, 

chromium, etc. transition metal species occur at MSi1s+ and MSi16+, while copper has 
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been found to have magic numbers at CuSi/ and CuSi10+.
49 In both systems, the mass 

spectra have been interpreted to suggest that these species represent metal-centered 

structures, although there have been no direct structural measurements. We again 

employed laser photodissociation to probe the MSh + and MSi10 + clusters of the noble 

metals. We find that mass spectra for copper, silver and gold all have magic numbers 

at these two cluster sizes. However (Figure 2), photodissociation again occurs primarily 

by the elimination of metal , suggesting that these clusters are also not metal centered. 
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Figure 1. The photodissociation of CuC15 +and CuC30 + at 355 nm. The negative peak indicates parent ion 
depletion and the positive peaks are the fragment ions. Metal atom loss is the main channel for both. 
Figure 2. Photodissociation of silver-silicon clusters at 355 nm. Metal atom loss is the main channel. 

Metal Oxide Clusters 

Metal oxide clusters are interesting for applications in surface science and 

catalysis,64
-
68 as well as in solar energy conversion. 67

-
68 Mass spectrometry has been 

applied to these systems,69
-
78 and they produce non-statistical combining ratios. Unlike 

metal carbide and silicides, there are no single magic numbered clusters, but rather at 

each metal increment there are several specific oxide stoichiometries. Structures have 
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been predicted by theory involving M-0-M-0 bonding networks.79-85 Small oxides have 

been studied with matrix isolation86 and photoelectron spectroscopy.87-89 Our group, in 

collaboration with Meijer and coworkers , has employed IR-REMPI to obtain the first IR 

spectroscopy for these species in the gas phase in studies of Zr, Ti, Mg and AI 

oxides.41
-44 Because IR-REMPI faiied for many other oxides, Fielicke and Meijer 

continued this work employing photodissociation spectroscopy with the free electron 

laser in a mass depletion mode of operation.45
-4

6 Asmis has employed depletion 

spectroscopy of mass-selected helium-tagged cluster ions (small VnOm +).47 In some 

systems, vibrational spectra have enough detail to suggest structures. However, 

especially for the transition metals, it is not yet clear which of the stoichiometries seen 

represents the most stable clusters . Neutral versus cation stability, as interpreted from 

mass spectral abundances, is often confused by different ionization/detection methods. 

We have employed photodissociation to investigate this. 

Figure 3 shows the mass spectrum we obtain for TanOm +clusters, while Figure 4 

shows photodissociation of selected Ta, V and Nb oxides. The signal/noise here is low 

because the clusters are difficult to fragment. We find two general channels for 

fragmentation. Clusters with excess oxygen lose either 02 or 0 atoms to produce a 

smaller oxide with the same number of metal atoms. The data .for Ta40 11 + and Ta40 12 + 

below illustrate this behavior. Clusters without excess oxygen tend to undergo fission, 

splitting off both metal and oxygen, producing a smaller oxide fragment. The stable 

oxides can then be identified as those clusters which do not lose oxygen only and which 

are produced repeatedly by fission of larger clusters. From studies like this of many 

MnOm +clusters of the metals V, Nb, Ta, we identify the n,m species 2,4; 3,7; 4,9; 5,12; 

and 7,17 as the most stable cation stoichiometries of these clusters. 
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Figure 3. The mass spectrum of tantalum oxide clusters produced directly as ions from the laser plasma. 
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Figure 4. Photodissociation of Ta, V and Nb oxide clusters at 355 nm. 

IR Spectroscopy of Metal-Molecular Complexes 

A primary focus of our research program recently has been the development of 

IR spectroscopy for metal atom clusters and for metal-ligand complexes.9
0-

111 IR 

spectroscopy probes the details of the metal-ligand interaction in the same way that 
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vibrational spectroscopy is applied to study adsorbates on metal surfaces.64
·
65 We have 

shown that IR photodissociation spectroscopy can determine the ligand vibrational shifts 

that occur on binding to metal,90
-
111 the coordination numbers of ligands around a metal 

ion,97
•
99

•
103

•
104 and the presence of intracluster reactions as metals insert into ligand 

bonds99
•
104 or as ligands couple with each other.93

•
111 By comparison of spectra to those 

predicted by theory, structures and metal electronic states can be determined. We have 

employed the free-electron laser for studies in the mid-IR (400-18.00 em·\ as shown in 

the spectrum of \/'(benzene) in Figure 5.91 In the higher frequency range (2000-4500 

em·\ we employ IR optical parametric oscillator (OPO) laser systems, as shown in the 

spectrum of Mg+(C02) 1,2,3 in Figure 6.94 

o.o.p i.p. 
H bend C ·H bend 
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i.p.C 
ringdist. 

600 800 1000 1200 1400 1600 1800 

Frequency (em·' ) 

v, 
free CO, 

Mg' -(CO,),Ar 

2320 2340 2360 2380 2400 2420 

em·' 

Figure 5. The IR photodissociation spectrum of \((benzene) measured in the fingerprint region with the 
free electron laser. 
Figure 6. TheIR photodissociation spectrum of Mg+(C02) 1,2,3 measured near the asymmetric stretch 
vibration using an IR-OPO laser system and the rare gas tagging method. The structures shown 
correspond to the blue bands predicted by theory (Brinkmann and Schaefer at UGA). 

Although metal-ligand binding energies often exceed the photon energy used to 

excite vibrational fundamentals, we have found that multiphoton excitation (with the free 

electron laser) or single photon excitation (with the OPO and the method of rare gas 
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tagging90
·
94

-
96

•
98

-
100

·
102

-
103

•
105

-
107

·
109

) can be used to obtain spectra with good efficiency for 

almost any desired metal-ligand complex. In our work for AFOSR (and related projects 

for DOE and NSF), we have obtained IR spectra for both main group and transition 

metal systems, as well as for atomic metal cation-molecular complexes and larger multi

metal atom clusters with adsorbates. AFOSR has supported the development of this 

~rea via DURIP funding for an Nd:YAG laser used to pump one of our OPO systems. 

Synthesis of Cluster Materials 

Although model studies in the gas phase are valuable, macroscopic amounts of 

clusters are needed to investigate their potential for new materials. We are therefore 

also working on the bulk synthesis of some of the same clusters that we have studied in 

the gas phase. Fullerenes or carbon nanotubes are typically produced via arc 

discharge sources.112
-
115 Inorganic synthesis in solution is effective for 

semiconductor4
·
7

·
116

-
118 or metal4-

7
·
119

-
121 quantum dots. However, while some metal 

oxide nanoparticles have been produced, 122
-
127 it is difficult to generate clusters 

containing transition metals. Laser vaporization is perhaps the most efficient way to 

make clusters from transition metals, but these species are produced in the gas phase. 

Real world applications require survival in air and solubility for convenient manipulation. 

Solubility is been obtained for quantum dots or noble metal colloids via ligand coating. 

To provide solubility and to stabilize our clusters, we desire a method that combines a 

cluster source with a ligand coating strategy. Andres has described a method in which 

a resistively heated oven or discharge source is combined in a high pressure gas flow 

with an injection of a ligand/solvent mixture using a nebulizer.128 We have adopted a 

similar strategy, but retain the laser source for studies of transition metal clusters. 
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For these synthesis experiments, we have constructed a laser ablation flow 

reactor (LAFR; Figure 7).127 It has a laser source scaled up to high repetition r~tes with 

a 100 Hz excimer laser, a flow tube for cluster growth, a ligand spray section to 

passivate cluster surfaces and a cooled trapping section where ligated clusters are 

collected in solution. The LAFR is operational and we have produced and isolated 

several new ligand-coated metal clusters, including (Ti02)n(THF)m and VnOm(THF)x in 

the size range of 20-50 total atoms.127 In the present configuration, synthesis proceeds . 

without any feedback on the operating conditions. However, we recently received 

DURIP funding for a differentially-pumped mass spectrometer system to monitor cluster 

growth. This system will include a reflectron time-of-flight mass spectrometer and an 

ArF excimer laser for photoionization detection. The vacuum system is under 

construction, and the full apparatus (shown in Figure 7) will come online soon. 

We analyze the material that we isolate using our laser desorption time-of-flight 

mass spectrometer, 129 which is located in the synthesis lab a few feet away from the 

LAFR, or with other conventional materials analysis instrumentation (IR, UV-VIS, SEM, 

TEM). The mass spectrometer has been employed for many previous studies of cluster 

materials, 129 and it has been used in a collaboration with an undergraduate research 

program at Valdosta State University.RB,R9. Figure 8 shows the mass spectrum of ligand

coated vanadium oxide clusters that were produced by vaporization of a titanium rod 

with a ligand spray of THF. The oxides are believed to be formed via metal reaction 

with the THF itself. The oxide stoichiometries isolated here are mainly the same ones 

identified as stable in our molecular beam experiments. 
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Figure 7. The laser vaporization flow tube reactor, with high intensity KrF laser for cluster production, 
differential pumping, reflectron time-of-flight mass spectrometer and ArF laser for photoionization. 
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Figure 8. The mass spectrum of reaction products generated in our LAFR instrument by vaporizing 
vanadium and combining the metal vapor with a ligand stream of THF. The resulting solution was 
transferred to a remote mass spec for analysis. 
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New Research Directions 

Introduction 

Metal compound clusters have high bond energies and are generally less 

reactive than pure metal clusters. Stability and lower reactivity are favorable 

characteristics for nanoparticle isolation. However, the properties of oxides, carbides 

·and silicides provide a rich variety of chemistry relevant not only for nanoparticles but 

also for surface science and catalysis. We therefore plan to continue to focus our 

research program in this area. We will use mass spectrometry and fixed-frequency 

photodissociation to investigate cluster dissociation channels and relative stability. We 

will continue to develop tunable laser IR spectroscopy to probe the vibrations of metal 

clusters and their molecular ligands or adsorbates. Finally, we will expand our effort in 

the controlled synthesis of nanoparticle materials with our flow reactor system. 

Laser Photodissociation at Fixed Wavelengths 

Mass spectra of pure transition metal clusters rarely deviate from a smooth 

distribution, but metal oxide, carbide and silicide mass distributions often contain magic 

numbered clusters or non-statistical combining ratios. These features are intriguing, but 

it is difficult to establish firmly the root cause of these distributions. Cluster growth 

kinetics and dynamics, neutral stabilities, ionization mechanisms, cation stability and 

fragmentation channels all play a role in the appearance of mass spectra. We have 

found that the distributions of clusters detected in this way are often misleading. Mass

selected photodissociation experiments provide a clearer indication of which clusters 

are more stable, as stable cations or neutral leaving groups tend to be produced 
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repeatedly from the fragmentation of larger clusters. We have performed extensive 

studies of the mass-selected dissociation of transition metal carbide clusters,9 and are 

finishing up studies of the noble metal carbides. Except for preliminary work by Beck, 5° 
our studies on noble metal species are the only ones to our knowledge on the 

photodissociation of metal-silicon clusters. Likewise, Castleman and coworkers have 

investigated some dissociation of vanadium oxide clusters,72
b but our recent study on V, 

Nb,and Ta is the only other work on transition metal oxides. On the other hand, 

interesting and often unexplained magic numbers have been seen in the mass spectra 

of almost all metal-silicon and metal-oxide clusters studied. We will therefore focus this 

work on the non-noble transition metal-silicon clusters 0/,Fe,Cr,Co,Ni, etc.) and on a 

variety of other transition metal (Fe, Cr, Co, etc.) oxide species. The goal is to identify 

stable clusters that may be isolated in the future and also to refine the capability of 

theory to predict which clusters are more stable. 

As usual in mass spectrometry, we are keenly aware of mass coincidences and 

isotopic distribution issues. For example, iron (56 amu) and silicon (28 amu) have a 

readily identified coincidence, as do Ti (48 amu) and three oxygens or Zn (64 amu) and 

four oxygens. Multiple metal atoms with multiple isotopes yield distributions that 

broaden mass peaks at our finite resolution, and so single isotope metals are preferred 

for these studies (e.g., V, Co, Nb, Y, Ta). These issues will guide our choice of systems 

to study. In cases where there is special interest, it is of course possible to use 

isotopically substituted species to aid in mass spectral interpretation. 

IR-REMPI studies and theory have identified the likely structures of small 

vanadium-oxide clusters,47
·
72

·
75

•
76

·
80

·
85 and our work has clarified the relative stability of 

oxygen-precise frameworks versus clusters with excess oxygen. For example, our 
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studies of VnOm+ clusters indicates that the V20/ species (calculated structure shown 

below), is produced as a photofragment from larger clusters, while V20·/ is not. 

Likewise, a symmetric structure can be drawn for V30/, and this cluster is produced as 

a fragment from many larger ones, confirming its stability. However, the mass spectrum 

of clusters produced initially has more intense peaks at other stoichiometries. 72
·
75

·
76 We 

find the same trends for V, Nb and Ta oxide clusters, i.e., the n,m species 2,4; 3,7; 4,9; 

5, 12; and 7,17 are the most stable cations, but these are not the most abundant clusters 

that grow. Remarkably, these same stable stoichiometries are produced in our isolation 

experiments on ligand coated VnOm clusters. We hope-to obtain similar information for 

other metal oxide species (Co,Y,Fe,Ni, etc.) to stimulate theory to explain and 

eventually predict such structures. 

Figure 9 .. Structures calculated for V20/ and V30/ clusters. 

We have shown that noble metal-silicon clusters do not likely have metal

·centered structures. However, the mass distributions for Fe, Cr, Wand other mid-series 

transition metal-silicon species nave different magic numbers at MSi15+ and MSi16+.50
•
51 

Theory has predicted metal centered structures for these species, 54
-5

3 and preliminary 

photodissociation work by Beck is consistent with this.50
c We will investigate these 

systems thoroughly with photodissociation to identify the stable clusters and whether or 

not they are likely to have metal-centered structures. 
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Because of our interest in noble metal clusters supported on oxide surfaces (see 

below), we will also attempt to make cluster analogues of these systems, e.g., 

AulYnOm)+. Photodissociation of these species can address whether the noble metal is 

integrated into the metal oxide network or segregated on its surface. 

Infrared Spectroscopy of Metal Compound Clusters 

While fixed-frequency photodissociation provides interesting qualitative 

information about cluster structure, it is desirable to measure spectra for these species 

that can be compared to the predictions of theory. Only then can suspected structures 

be confirmed with confidence. However, although we have had success with 

spectroscopy on metal-ligand complexes, it is quite difficult to obtain vibrational 

spectroscopy for metal atom clusters that have no ligands. The vibrations in pure metal 

clusters occur at very low f~equencies (100-400 cm-\ 130·131 while those for carbide, 

oxide, and silicides may be found at somewhat higher frequencies. Our previous work 

on metal carbide and oxide clusters37
-44 used the FELIX free electron laser to cover the 

requi red wavelength region of 400-1800 cm·1. However, in the last several years we 

have found that the IR-REMPI technique employed for those experiments only works for 

a few carbide and oxides, while photodissociation experiments are needed to study 

other systems. In both IR-REMPI and photodissociation experiments, the FELIX laser 

linewidth and the high laser powers required for multiphoton processes leads to broad 

lines and red-shifted vibrational resonances.41 For example, although we reported 

spectra for TisC12 some time ago, the exact structure of this cluster (Dzd versus Td) is 

still not known.37·41 Multiplet structure predicted by theory in the 1400 cm·1 region 

18 



( ( 

cannot be resolved by the FELIX experiment. It is therefore desirable to have a better 

laser source for iR spectroscopy in the fingerprint region. 

Our present IR OPO systems have good linewidth (0.3 cm-1
) and are easy to use, 

but the wavelength coverage at present is limited to about 2000-4500 cm·1. This works 

well for the vibrations that occur at higher frequencies for many small molecules, and 

this is why we have focused our work to date on metal-ligand complexes. However, we 

have recently obtained a new OPO crystal (AgGaSe2) that provides expanded IR 

wavelength coverage (600-1900 cm"1
) via difference frequency generation between the 

present OPO oscillator signal beam and the 1.06 f.! pump laser. Although the 

conversion efficiency is not as good as that at higher frequencies, we can produce 20-

400 f.!J/pulse in this region. In our collaborative project with Mark Johnson, we have 

recently studied protonated water clusters, H+(H20)n in the 600-2000 cm·1 region, 132 and 

the IR pulse energy from this AgGaSe2 OPO was enough to obtain good signals for 

these mass-selected ions (via multipass excitation and argon tagging methods). Our 

crystal is already installed and working, and when some data acquisition programming 

issues are fixed, we will be ready to measure spectra. Extension of experiments all the 

way down to 600 cm·1 will require new windows (AR-coated ZnSe) to replace our 

current CaF windows (these don't transmit below 1000 cm-1
). 

We plan to use this new IR laser source to measure spectra for mass-selected 

cations of the carbide and oxide clusters, in much the same way that we have already 

studied metal-ligand complex ions. We will prepare clusters of the form MnXm + (X=C,O) 

tagged with argon or neon, e.g., MnXm+-RGx. M-C, M-0, C-C and 0-0 stretch vibrations 

are known to occur in the 600-1900 cm·1 region covered by this laser, and excitation of 

these can lead to the loss of one or more rare gas atoms. We will first examine some of 
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the same systems studied already at lower resolution with the free electron laser, e.g. , 

MsC12+, (M=Ti,V,Zr) which have strong resonances40 near 1400 cm-1; (AI20 3)n which 

have bands44 near 900 cm-1; NbnOm + which have bands46 at 800 and 1000 cm-1; etc . 

. Carbides and oxides will generally have higher vibrational frequencies than silicides, 

and so we will focus on these species first. At the lower energies of theIR excitation 

here, the binding of argon may be strong enough so that its elimination is not efficient. 

However, in such cases we find that multiple argon attachment or neon tagging can 

overcome this limitation. The IR-REMPI method could only study clusters above 20 or 

so atoms, but IR photodissociation works for smaller species that are easier to handle 

with theory. It should be possible to measure spectra for clusters with only a few atoms 

(e.g. , VC2+, V2C/) up to those with 20 or more atoms for the same metal compound 

system. Likewise, many of the newer results for cations have been done in the mode of 

parent ion depletion because full mass-selection was not available. However, we detect 

the fragments from selected parent ions on a zero background, and therefore have 

higher sensitivity. In experiments so far, we have large enough signals so that ions are 

integrated with an oscilloscope, but counting electronics are available if needed. 

Infrared Spectroscopy of Metal-Ligand Adducts 

As noted above, metal oxides are important in surface science and catalysis, 54-
58 

both because of their own intrinsic reactivity and because these materials are important 

as supports for metal nanoparticle catalysts. Nanocatalysis has become ah important 

subfield of cluster research, motivated in particular by the surprising behavior of small 

gold clusters deposited on metal oxides, as reported first by Haruta and coworkers.13·3 

While there has been a tremendous effort aimed at the surface science of supported 
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gold clusters,13
4-

144 and gas phase reactions .of small metal oxides and gold clusters 

have been studied,145
-
149 there is virtually no spectroscopy of this adsorption chemistry 

on gas phase clusters. Our metal-molecular infrared measurements are ideally suited 

to probe the details of molecular adsorption in these systems. Likewise, our synthesis 

program also requires knowledge of ligand interactions on compound nanoparticles. 

Therefore, we will employ IR spectroscopy to probe molecular adsorbates on metal 

oxide systems and on noble metal clusters. 

The mechanism of the reactivity of oxide-supported gold clusters is believed to 

involve charge injection from the oxide surface into the gold clusters, making these 

clusters more negative. 135
·
144 This takes place most effectively when the cluster is 

supported on a defect site on the oxide surface. To probe the fundamental interactions 

involved, we will systematically study theIR spectroscopy of adsorbate molecules on 

small oxide clusters, on pure gold clusters and on gold-oxide mixtures. Silver and 

copper studies will also be done to complement the gold work. We will focus on some 

of the same oxide metals (Ti, Mg, V) and adsorbate molecules (CO, C02 , ethylene, 

acetylene, etc.) studied in the previous surface chemistry on these systems. Based on 

our prior experience with various metal-ligand clusters and with the production of 

compound and mixed-metal clusters, we anticipate no problem in producing the desired 

species. The issues of charging suggest that we should investigate both the 

corresponding cation and anion clusters. Although we work mostly on cations, 

extension of our experiments to anions is also feasible. 

The asymmetric stretch of C02 has already been studied in our lab on many 

metal ions90
·
94

·
96

·
97

·
99

·
104 and also on nickel-oxide ions,97 and this mode is accessible 

with our present OPO system. Likewise C-H stretch vibrations have already been 
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studied by our group in many metal complexes.93·103·105·107·111 In acetylene and ethylene 

complexes, isomeric species (vinylidene, ethylidyne) may be formed, 64 and theIR would 

identify these structures. C-0 and C-C stretches are likely to occur at frequencies 

below 2000 cm-1, and these will be accessible with the new AgGaSe2 OPO 

configuration. We suspect that adsorbed 02 may also be detected in the low frequency 

range; our recent studies of N2 adsorbed on vanadium show that the N-N stretch 

achieves high IR activity when attached to metal.108 Most of our experiments to date 

have focused on small metal systems, but we have recently reported a study of the 

bend ing mode of water adsorbed on vanadium clusters in the size range up to 18 metal 

atoms.150 Although infrared spectroscopy on metal systems is becoming more popular, 

and there are several studies of adsorbates on metal clusters that have been done with 

free electron lasers,46·151-152 our research group is presently the only one with metal 

cluster sources and the new OPO technology needed to attack these problems with 

higher spectral resolution . Related to this work, Castleman and coworkers 153 have 

studied the reaction kinetics of small hydrocarbons interacting with V, Ta and Nb oxide 

cation clusters. It will therefore be interesting to probe the spectroscopy of the reactive 

versus non-reactive clusters to complement this work. 

Synthesis of Ligand-Coated Clusters 

The general strategy of our synthetic program was described earlier, and the 

apparatus is shown in Figure 7. Our primary targets for isolation are the metal carbide, 

oxide and silicide clusters of the transition metals, which we will produce in the flow 

reactor and stabilize with ligand coatings. A major focus will be on the M8C12 met-car 

and the M14C13 nanocrystal species, which are most stable for the metals Ti, V, Zr. 
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Although there have been many attempts to isolate these species via arc discharge 

methods, they continue to elude isolation. We have had evidence in some experiments 

that we made small amounts of TiaC12 coated with ethylenediamine, but these results 

were not reproducible. With the new mass spectrometry diagnostics, we hope to have 

better control to optimize conditions and more success. Our results on metal oxides 

have been more productive, and we have been able to make ligand-coated titanium and 

vanadium oxide clusters reproducibly. The titanium system produced complexes 

containing from only two or three metal atoms up to nm and even micron diameter 

particles (imaged with TEM). These results suggest that many other transition metal 

oxides will be accessible via our methodology. We have not yet attempted metal-silicon 

cluster isolation, but these systems are also interesting. 

The choice of ligand material for nanoparticle coatings is a crucial aspect of 

these studies. To date, we have tried THF and ethylenediamine for these experiments. 

THF reacted with titanium and vanadium, producing oxides when no other source of 

oxygen was present. 127 Ethylenediamine was much less reactive, and attached to 

metal without fragmentation. 127 We will therefore focus on other mono- and bidentate 

ligands with nitrogen coordination as our next approach for these systems. We will 

seek guidance from able inorganic chemists in our department and elsewhere to make 

up for our limited abilities as synthetic chemists. 

The initial characterization of ligand-coated nanoparticle solutions will take place 

with our remote laser desorption mass spectrometer, as noted before. As systems are 

optimized with the on-line mass spectrometer diagnostics and produced in greater 

quantities, we can extend the analysis to conventional spectroscopy (IR, UV-VIS, NMR) 

and imaging systems (SEM, TEM, AFM), all of which are available in our department. 
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We also have access to laser desorption with high resolution FT-MS analysis via 

instruments located in the lab of Dr. Jon Amster (also at UGA). Exact mass 

measurements and isotope patterns make it possible to determine the number of metal 

atoms present when there are nominal metal-ligand mass coincidences. 

The outlook for these synthesis experiments is much less certain than our 

molecular beam experiments. However, the LAFR methodology represents a distinctly 

different approach to nanoparticle synthesis, and the results so far are very promising. 

With the new mass spectrometer system, we should be able to optimize conditions and 

produce clusters more efficiently and reproducibly than before. Although this work is 

risky, its potential payoffs are significant. 
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